
1. Intro
Hey! Socket programming got you down? Is this stuff just a little too difficult to figure out from the man pages?
You want to do cool Internet programming, but you don't have time to wade through a gob of structs trying to figure
out if you have to call bind() before you connect(), etc., etc.
Well, guess what! I've already done this nasty business, and I'm dying to share the information with everyone!
You've come to the right place. This document should give the average competent C programmer the edge s/he
needs to get a grip on this networking noise.

1.1. Audience
This document has been written as a tutorial, not a reference. It is probably at its best when read by individuals who
are just starting out with socket programming and are looking for a foothold. It is certainly not the complete guide to
sockets programming, by any means.
Hopefully, though, it'll be just enough for those man pages to start making sense... :-)

1.2. Platform and Compiler
The code contained within this document was compiled on a Linux PC using Gnu's gcc compiler. It should,
however, build on just about any platform that uses gcc. Naturally, this doesn't apply if you're programming for
Windows--see the section on Windows programming, below.

1.3. Official Homepage
This official location of this document is at California State University, Chico, at
http://www.ecst.csuchico.edu/~beej/guide/net/.

1.4. Note for Solaris/SunOS Programmers
When compiling for Solaris or SunOS, you need to specify some extra command-line switches for linking in the
proper libraries. In order to do this, simply add "-lnsl -lsocket -lresolv" to the end of the compile command, like so:
 $ cc -o server server.c -lnsl -lsocket -lresolv
If you still get errors, you could try further adding a "-lxnet" to the end of that command line. I don't know what that
does, exactly, but some people seem to need it.
Another place that you might find problems is in the call to setsockopt(). The prototype differs from that on my
Linux box, so instead of:

int yes=1;
enter this:

char yes='1';
As I don't have a Sun box, I haven't tested any of the above information--it's just what people have told me through
email.

1.5. Note for Windows Programmers
I have a particular dislike for Windows, and encourage you to try Linux, BSD, or Unix instead. That being said, you
can still use this stuff under Windows.
First, ignore pretty much all of the system header files I mention in here. All you need to include is:
 #include <winsock.h>
Wait! You also have to make a call to WSAStartup() before doing anything else with the sockets library. The code
to do that looks something like this:
 #include <winsock.h>

 {
 WSADATA wsaData; // if this doesn't work
 //WSAData wsaData; // then try this instead

 if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0) {
 fprintf(stderr, "WSAStartup failed.\n");
 exit(1);
 }

You also have to tell your compiler to link in the Winsock library, usually called wsock32.lib or winsock32.lib or
somesuch. Under VC++, this can be done through the Project menu, under Settings.... Click the Link tab, and look
for the box titled "Object/library modules". Add "wsock32.lib" to that list.
Or so I hear.
Finally, you need to call WSACleanup() when you're all through with the sockets library. See your online help for
details.
Once you do that, the rest of the examples in this tutorial should generally apply, with a few exceptions. For one
thing, you can't use close() to close a socket--you need to use closesocket(), instead. Also, select() only works with
socket descriptors, not file descriptors (like 0 for stdin).
There is also a socket class that you can use, CSocket. Check your compilers help pages for more information.
To get more information about Winsock, read the Winsock FAQ and go from there.
Finally, I hear that Windows has no fork() system call which is, unfortunately, used in some of my examples. Maybe
you have to link in a POSIX library or something to get it to work, or you can use CreateProcess() instead. fork()
takes no arguments, and CreateProcess() takes about 48 billion arguments. If you're not up to that, the
CreateThread() is a little easier to digest...unfortunately a discussion about multithreading is beyond the scope of this
document. I can only talk about so much, you know!

1.6. Email Policy
I'm generally available to help out with email questions so feel free to write in, but I can't guarantee a response. I
lead a pretty busy life and there are times when I just can't answer a question you have. When that's the case, I
usually just delete the message. It's nothing personal; I just won't ever have the time to give the detailed answer you
require.
As a rule, the more complex the question, the less likely I am to respond. If you can narrow down your question
before mailing it and be sure to include any pertinent information (like platform, compiler, error messages you're
getting, and anything else you think might help me troubleshoot), you're much more likely to get a response. For
more pointers, read ESR's document, How To Ask Questions The Smart Way.
If you don't get a response, hack on it some more, try to find the answer, and if it's still elusive, then write me again
with the information you've found and hopefully it will be enough for me to help out.
Now that I've badgered you about how to write and not write me, I'd just like to let you know that I fully appreciate
all the praise the guide has received over the years. It's a real morale boost, and it gladdens me to hear that it is being
used for good! :-) Thank you!

1.7. Mirroring
You are more than welcome to mirror this site, whether publically or privately. If you publically mirror the site and
want me to link to it from the main page, drop me a line at <beej@piratehaven.org>.

1.8. Note for Translators
If you want to translate the guide into another language, write me at <beej@piratehaven.org> and I'll link to your
translation from the main page.
Feel free to add your name and email address to the translation.
Sorry, but due to space constraints, I cannot host the translations myself.

1.9. Copyright and Distribution
Beej's Guide to Network Programming is Copyright © 1995-2001 Brian "Beej" Hall.
This guide may be freely reprinted in any medium provided that its content is not altered, it is presented in its
entirety, and this copyright notice remains intact.
Educators are especially encouraged to recommend or supply copies of this guide to their students.
This guide may be freely translated into any language, provided the translation is accurate, and the guide is reprinted
in its entirety. The translation may also include the name and contact information for the translator.
The C source code presented in this document is hereby granted to the public domain.
Contact <beej@piratehaven.org> for more information.

2. What is a socket?
You hear talk of "sockets" all the time, and perhaps you are wondering just what they are exactly. Well, they're this:
a way to speak to other programs using standard Unix file descriptors.
What?
Ok--you may have heard some Unix hacker state, "Jeez, everything in Unix is a file!" What that person may have
been talking about is the fact that when Unix programs do any sort of I/O, they do it by reading or writing to a file
descriptor. A file descriptor is simply an integer associated with an open file. But (and here's the catch), that file can
be a network connection, a FIFO, a pipe, a terminal, a real on-the-disk file, or just about anything else. Everything in
Unix is a file! So when you want to communicate with another program over the Internet you're gonna do it through
a file descriptor, you'd better believe it.
"Where do I get this file descriptor for network communication, Mr. Smarty-Pants?" is probably the last question on
your mind right now, but I'm going to answer it anyway: You make a call to the socket() system routine. It returns
the socket descriptor, and you communicate through it using the specialized send() and recv() (man send, man recv)
socket calls.
"But, hey!" you might be exclaiming right about now. "If it's a file descriptor, why in the name of Neptune can't I
just use the normal read() and write() calls to communicate through the socket?" The short answer is, "You can!"
The longer answer is, "You can, but send() and recv() offer much greater control over your data transmission."
What next? How about this: there are all kinds of sockets. There are DARPA Internet addresses (Internet Sockets),
path names on a local node (Unix Sockets), CCITT X.25 addresses (X.25 Sockets that you can safely ignore), and
probably many others depending on which Unix flavor you run. This document deals only with the first: Internet
Sockets.

2.1. Two Types of Internet Sockets
What's this? There are two types of Internet sockets? Yes. Well, no. I'm lying. There are more, but I didn't want to
scare you. I'm only going to talk about two types here. Except for this sentence, where I'm going to tell you that
"Raw Sockets" are also very powerful and you should look them up.
All right, already. What are the two types? One is "Stream Sockets"; the other is "Datagram Sockets", which may
hereafter be referred to as "SOCK_STREAM" and "SOCK_DGRAM", respectively. Datagram sockets are
sometimes called "connectionless sockets". (Though they can be connect()'d if you really want. See connect(),
below.)
Stream sockets are reliable two-way connected communication streams. If you output two items into the socket in
the order "1, 2", they will arrive in the order "1, 2" at the opposite end. They will also be error free. Any errors you
do encounter are figments of your own deranged mind, and are not to be discussed here.
What uses stream sockets? Well, you may have heard of the telnet application, yes? It uses stream sockets. All the
characters you type need to arrive in the same order you type them, right? Also, web browsers use the HTTP
protocol which uses stream sockets to get pages. Indeed, if you telnet to a web site on port 80, and type "GET /", it'll
dump the HTML back at you!
How do stream sockets achieve this high level of data transmission quality? They use a protocol called "The
Transmission Control Protocol", otherwise known as "TCP" (see RFC-793 for extremely detailed info on TCP.)
TCP makes sure your data arrives sequentially and error-free. You may have heard "TCP" before as the better half
of "TCP/IP" where "IP" stands for "Internet Protocol" (see RFC-791.) IP deals primarily with Internet routing and is
not generally responsible for data integrity.
Cool. What about Datagram sockets? Why are they called connectionless? What is the deal, here, anyway? Why are
they unreliable? Well, here are some facts: if you send a datagram, it may arrive. It may arrive out of order. If it
arrives, the data within the packet will be error-free.
Datagram sockets also use IP for routing, but they don't use TCP; they use the "User Datagram Protocol", or "UDP"
(see RFC-768.)
Why are they connectionless? Well, basically, it's because you don't have to maintain an open connection as you do
with stream sockets. You just build a packet, slap an IP header on it with destination information, and send it out. No
connection needed. They are generally used for packet-by-packet transfers of information. Sample applications: tftp,
bootp, etc.
"Enough!" you may scream. "How do these programs even work if datagrams might get lost?!" Well, my human
friend, each has it's own protocol on top of UDP. For example, the tftp protocol says that for each packet that gets
sent, the recipient has to send back a packet that says, "I got it!" (an "ACK" packet.) If the sender of the original
packet gets no reply in, say, five seconds, he'll re-transmit the packet until he finally gets an ACK. This
acknowledgment procedure is very important when implementing SOCK_DGRAM applications.

2.2. Low level Nonsense and Network Theory
Since I just mentioned layering of protocols, it's time to talk about how networks really work, and to show some
examples of how SOCK_DGRAM packets are built. Practically, you can probably skip this section. It's good
background, however.

Figure 1. Data Encapsulation.

Hey, kids, it's time to learn about Data Encapsulation! This is very very important. It's so important that you might
just learn about it if you take the networks course here at Chico State ;-). Basically, it says this: a packet is born, the
packet is wrapped ("encapsulated") in a header (and rarely a footer) by the first protocol (say, the TFTP protocol),
then the whole thing (TFTP header included) is encapsulated again by the next protocol (say, UDP), then again by
the next (IP), then again by the final protocol on the hardware (physical) layer (say, Ethernet).
When another computer receives the packet, the hardware strips the Ethernet header, the kernel strips the IP and
UDP headers, the TFTP program strips the TFTP header, and it finally has the data.
Now I can finally talk about the infamous Layered Network Model. This Network Model describes a system of
network functionality that has many advantages over other models. For instance, you can write sockets programs
that are exactly the same without caring how the data is physically transmitted (serial, thin Ethernet, AUI, whatever)
because programs on lower levels deal with it for you. The actual network hardware and topology is transparent to
the socket programmer.
Without any further ado, I'll present the layers of the full-blown model. Remember this for network class exams:

• Application
• Presentation
• Session
• Transport
• Network
• Data Link
• Physical

The Physical Layer is the hardware (serial, Ethernet, etc.). The Application Layer is just about as far from the
physical layer as you can imagine--it's the place where users interact with the network.
Now, this model is so general you could probably use it as an automobile repair guide if you really wanted to. A
layered model more consistent with Unix might be:

• Application Layer (telnet, ftp, etc.)
• Host-to-Host Transport Layer (TCP, UDP)
• Internet Layer (IP and routing)
• Network Access Layer (Ethernet, ATM, or whatever)

At this point in time, you can probably see how these layers correspond to the encapsulation of the original data.
See how much work there is in building a simple packet? Jeez! And you have to type in the packet headers yourself
using "cat"! Just kidding. All you have to do for stream sockets is send() the data out. All you have to do for
datagram sockets is encapsulate the packet in the method of your choosing and sendto() it out. The kernel builds the
Transport Layer and Internet Layer on for you and the hardware does the Network Access Layer. Ah, modern
technology.
So ends our brief foray into network theory. Oh yes, I forgot to tell you everything I wanted to say about routing:
nothing! That's right, I'm not going to talk about it at all. The router strips the packet to the IP header, consults its
routing table, blah blah blah. Check out the IP RFC if you really really care. If you never learn about it, well, you'll
live.

3. structs and Data Handling
Well, we're finally here. It's time to talk about programming. In this section, I'll cover various data types used by the
sockets interface, since some of them are a real bear to figure out.
First the easy one: a socket descriptor. A socket descriptor is the following type:
 int
Just a regular int.
Things get weird from here, so just read through and bear with me. Know this: there are two byte orderings: most
significant byte (sometimes called an "octet") first, or least significant byte first. The former is called "Network Byte
Order". Some machines store their numbers internally in Network Byte Order, some don't. When I say something
has to be in Network Byte Order, you have to call a function (such as htons()) to change it from "Host Byte Order".
If I don't say "Network Byte Order", then you must leave the value in Host Byte Order.
(For the curious, "Network Byte Order" is also know as "Big-Endian Byte Order".)
My First StructTM--struct sockaddr. This structure holds socket address information for many types of sockets:
 struct sockaddr {
 unsigned short sa_family; // address family, AF_xxx
 char sa_data[14]; // 14 bytes of protocol address
 };
sa_family can be a variety of things, but it'll be AF_INET for everything we do in this document. sa_data contains a
destination address and port number for the socket. This is rather unwieldy since you don't want to tediously pack
the address in the sa_data by hand.
To deal with struct sockaddr, programmers created a parallel structure: struct sockaddr_in ("in" for "Internet".)
 struct sockaddr_in {
 short int sin_family; // Address family
 unsigned short int sin_port; // Port number
 struct in_addr sin_addr; // Internet address
 unsigned char sin_zero[8]; // Same size as struct sockaddr
 };
This structure makes it easy to reference elements of the socket address. Note that sin_zero (which is included to pad
the structure to the length of a struct sockaddr) should be set to all zeros with the function memset(). Also, and this
is the important bit, a pointer to a struct sockaddr_in can be cast to a pointer to a struct sockaddr and vice-versa. So
even though socket() wants a struct sockaddr*, you can still use a struct sockaddr_in and cast it at the last minute!
Also, notice that sin_family corresponds to sa_family in a struct sockaddr and should be set to "AF_INET". Finally,
the sin_port and sin_addr must be in Network Byte Order!
"But," you object, "how can the entire structure, struct in_addr sin_addr, be in Network Byte Order?" This question
requires careful examination of the structure struct in_addr, one of the worst unions alive:
 // Internet address (a structure for historical reasons)
 struct in_addr {
 unsigned long s_addr; // that's a 32-bit long, or 4 bytes
 };
Well, it used to be a union, but now those days seem to be gone. Good riddance. So if you have declared ina to be of
type struct sockaddr_in, then ina.sin_addr.s_addr references the 4-byte IP address (in Network Byte Order). Note
that even if your system still uses the God-awful union for struct in_addr, you can still reference the 4-byte IP
address in exactly the same way as I did above (this due to #defines.)

3.1. Convert the Natives!
We've now been lead right into the next section. There's been too much talk about this Network to Host Byte Order
conversion--now is the time for action!
All righty. There are two types that you can convert: short (two bytes) and long (four bytes). These functions work
for the unsigned variations as well. Say you want to convert a short from Host Byte Order to Network Byte Order.
Start with "h" for "host", follow it with "to", then "n" for "network", and "s" for "short": h-to-n-s, or htons() (read:
"Host to Network Short").
It's almost too easy...
You can use every combination if "n", "h", "s", and "l" you want, not counting the really stupid ones. For example,
there is NOT a stolh() ("Short to Long Host") function--not at this party, anyway. But there are:

• htons() -- "Host to Network Short"
• htonl() -- "Host to Network Long"
• ntohs() -- "Network to Host Short"
• ntohl() -- "Network to Host Long"

Now, you may think you're wising up to this. You might think, "What do I do if I have to change byte order on a
char?" Then you might think, "Uh, never mind." You might also think that since your 68000 machine already uses
network byte order, you don't have to call htonl() on your IP addresses. You would be right, BUT if you try to port to
a machine that has reverse network byte order, your program will fail. Be portable! This is a Unix world! (As much
as Bill Gates would like to think otherwise.) Remember: put your bytes in Network Byte Order before you put them
on the network.
A final point: why do sin_addr and sin_port need to be in Network Byte Order in a struct sockaddr_in, but
sin_family does not? The answer: sin_addr and sin_port get encapsulated in the packet at the IP and UDP layers,
respectively. Thus, they must be in Network Byte Order. However, the sin_family field is only used by the kernel to
determine what type of address the structure contains, so it must be in Host Byte Order. Also, since sin_family does
not get sent out on the network, it can be in Host Byte Order.

3.2. IP Addresses and How to Deal With Them
Fortunately for you, there are a bunch of functions that allow you to manipulate IP addresses. No need to figure
them out by hand and stuff them in a long with the << operator.
First, let's say you have a struct sockaddr_in ina, and you have an IP address "10.12.110.57" that you want to store
into it. The function you want to use, inet_addr(), converts an IP address in numbers-and-dots notation into an
unsigned long. The assignment can be made as follows:
 ina.sin_addr.s_addr = inet_addr("10.12.110.57");
Notice that inet_addr() returns the address in Network Byte Order already--you don't have to call htonl(). Swell!
Now, the above code snippet isn't very robust because there is no error checking. See, inet_addr() returns -1 on
error. Remember binary numbers? (unsigned)-1 just happens to correspond to the IP address 255.255.255.255!
That's the broadcast address! Wrongo. Remember to do your error checking properly.
Actually, there's a cleaner interface you can use instead of inet_addr(): it's called inet_aton() ("aton" means "ascii to
network"):
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <arpa/inet.h>

 int inet_aton(const char *cp, struct in_addr *inp);
And here's a sample usage, while packing a struct sockaddr_in (this example will make more sense to you when you
get to the sections on bind() and connect().)
 struct sockaddr_in my_addr;

 my_addr.sin_family = AF_INET; // host byte order
 my_addr.sin_port = htons(MYPORT); // short, network byte order
 inet_aton("10.12.110.57", &(my_addr.sin_addr));
 memset(&(my_addr.sin_zero), '\0', 8); // zero the rest of the struct
inet_aton(), unlike practically every other socket-related function, returns non-zero on success, and zero on failure.
And the address is passed back in inp.
Unfortunately, not all platforms implement inet_aton() so, although its use is preferred, the older more common
inet_addr() is used in this guide.
All right, now you can convert string IP addresses to their binary representations. What about the other way around?
What if you have a struct in_addr and you want to print it in numbers-and-dots notation? In this case, you'll want to
use the function inet_ntoa() ("ntoa" means "network to ascii") like this:
 printf("%s", inet_ntoa(ina.sin_addr));
That will print the IP address. Note that inet_ntoa() takes a struct in_addr as an argument, not a long. Also notice
that it returns a pointer to a char. This points to a statically stored char array within inet_ntoa() so that each time you
call inet_ntoa() it will overwrite the last IP address you asked for. For example:
 char *a1, *a2;
 .
 .
 a1 = inet_ntoa(ina1.sin_addr); // this is 192.168.4.14
 a2 = inet_ntoa(ina2.sin_addr); // this is 10.12.110.57
 printf("address 1: %s\n",a1);
 printf("address 2: %s\n",a2);
will print:
 address 1: 10.12.110.57
 address 2: 10.12.110.57
If you need to save the address, strcpy() it to your own character array.

That's all on this topic for now. Later, you'll learn to convert a string like "whitehouse.gov" into its corresponding IP
address (see DNS, below.)

4. System Calls or Bust
This is the section where we get into the system calls that allow you to access the network functionality of a Unix
box. When you call one of these functions, the kernel takes over and does all the work for you automagically.

The place most people get stuck around here is what order to call these things in. In that, the man pages are no use,
as you've probably discovered. Well, to help with that dreadful situation, I've tried to lay out the system calls in the
following sections in exactly (approximately) the same order that you'll need to call them in your programs.

That, coupled with a few pieces of sample code here and there, some milk and cookies (which I fear you will have to
supply yourself), and some raw guts and courage, and you'll be beaming data around the Internet like the Son of Jon
Postel!

4.1. socket()--Get the File Descriptor!
I guess I can put it off no longer--I have to talk about the socket() system call. Here's the breakdown:

 #include <sys/types.h>
 #include <sys/socket.h>

 int socket(int domain, int type, int protocol);

But what are these arguments? First, domain should be set to "AF_INET", just like in the struct sockaddr_in
(above.) Next, the type argument tells the kernel what kind of socket this is: SOCK_STREAM or SOCK_DGRAM.
Finally, just set protocol to "0" to have socket() choose the correct protocol based on the type. (Notes: there are
many more domains than I've listed. There are many more types than I've listed. See the socket() man page. Also,
there's a "better" way to get the protocol. See the getprotobyname() man page.)

socket() simply returns to you a socket descriptor that you can use in later system calls, or -1 on error. The global
variable errno is set to the error's value (see the perror() man page.)

In some documentation, you'll see mention of a mystical "PF_INET". This is a weird etherial beast that is rarely seen
in nature, but I might as well clarify it a bit here. Once a long time ago, it was thought that maybe a address family
(what the "AF" in "AF_INET" stands for) might support several protocols that were referenced by their protocol
family (what the "PF" in "PF_INET" stands for). That didn't happen. Oh well. So the correct thing to do is to use
AF_INET in your struct sockaddr_in and PF_INET in your call to socket(). But practically speaking, you can use
AF_INET everywhere. And, since that's what W. Richard Stevens does in his book, that's what I'll do here.

Fine, fine, fine, but what good is this socket? The answer is that it's really no good by itself, and you need to read on
and make more system calls for it to make any sense.

4.2. bind()--What port am I on?
Once you have a socket, you might have to associate that socket with a port on your local machine. (This is
commonly done if you're going to listen() for incoming connections on a specific port--MUDs do this when they tell
you to "telnet to x.y.z port 6969".) The port number is used by the kernel to match an incoming packet to a certain
process's socket descriptor. If you're going to only be doing a connect(), this may be unnecessary. Read it anyway,
just for kicks.

Here is the synopsis for the bind() system call:

 #include <sys/types.h>
 #include <sys/socket.h>

 int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

sockfd is the socket file descriptor returned by socket(). my_addr is a pointer to a struct sockaddr that contains
information about your address, namely, port and IP address. addrlen can be set to sizeof(struct sockaddr).

Whew. That's a bit to absorb in one chunk. Let's have an example:

 #include <string.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>

 #define MYPORT 3490

 main()
 {
 int sockfd;
 struct sockaddr_in my_addr;

 sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!

 my_addr.sin_family = AF_INET; // host byte order
 my_addr.sin_port = htons(MYPORT); // short, network byte order
 my_addr.sin_addr.s_addr = inet_addr("10.12.110.57");
 memset(&(my_addr.sin_zero), '\0', 8); // zero the rest of the struct

 // don't forget your error checking for bind():
 bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));
 .
 .
There are a few things to notice here: my_addr.sin_port is in Network Byte Order. So is my_addr.sin_addr.s_addr.
Another thing to watch out for is that the header files might differ from system to system. To be sure, you should
check your local man pages.

Lastly, on the topic of bind(), I should mention that some of the process of getting your own IP address and/or port
can can be automated:

 my_addr.sin_port = 0; // choose an unused port at random
 my_addr.sin_addr.s_addr = INADDR_ANY; // use my IP address

See, by setting my_addr.sin_port to zero, you are telling bind() to choose the port for you. Likewise, by setting
my_addr.sin_addr.s_addr to INADDR_ANY, you are telling it to automatically fill in the IP address of the machine
the process is running on.

If you are into noticing little things, you might have seen that I didn't put INADDR_ANY into Network Byte Order!
Naughty me. However, I have inside info: INADDR_ANY is really zero! Zero still has zero on bits even if you
rearrange the bytes. However, purists will point out that there could be a parallel dimension where INADDR_ANY
is, say, 12 and that my code won't work there. That's ok with me:

 my_addr.sin_port = htons(0); // choose an unused port at random
 my_addr.sin_addr.s_addr = htonl(INADDR_ANY); // use my IP address

Now we're so portable you probably wouldn't believe it. I just wanted to point that out, since most of the code you
come across won't bother running INADDR_ANY through htonl().

bind() also returns -1 on error and sets errno to the error's value.

Another thing to watch out for when calling bind(): don't go underboard with your port numbers. All ports below
1024 are RESERVED (unless you're the superuser)! You can have any port number above that, right up to 65535
(provided they aren't already being used by another program.)

Sometimes, you might notice, you try to rerun a server and bind() fails, claiming "Address already in use." What
does that mean? Well, a bit a of socket that was connected is still hanging around in the kernel, and it's hogging the
port. You can either wait for it to clear (a minute or so), or add code to your program allowing it to reuse the port,
like this:

 int yes=1;
//char yes='1'; // Solaris people use this

 // lose the pesky "Address already in use" error message
 if (setsockopt(listener,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -1) {
 perror("setsockopt");
 exit(1);
 }

One small extra final note about bind(): there are times when you won't absolutely have to call it. If you are
connect()ing to a remote machine and you don't care what your local port is (as is the case with telnet where you
only care about the remote port), you can simply call connect(), it'll check to see if the socket is unbound, and will
bind() it to an unused local port if necessary.

4.3. connect()--Hey, you!
Let's just pretend for a few minutes that you're a telnet application. Your user commands you (just like in the movie
TRON) to get a socket file descriptor. You comply and call socket(). Next, the user tells you to connect to
"10.12.110.57" on port "23" (the standard telnet port.) Yow! What do you do now?

Lucky for you, program, you're now perusing the section on connect()--how to connect to a remote host. So read
furiously onward! No time to lose!

The connect() call is as follows:

 #include <sys/types.h>
 #include <sys/socket.h>

 int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

sockfd is our friendly neighborhood socket file descriptor, as returned by the socket() call, serv_addr is a struct
sockaddr containing the destination port and IP address, and addrlen can be set to sizeof(struct sockaddr).

Isn't this starting to make more sense? Let's have an example:

 #include <string.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>

 #define DEST_IP "10.12.110.57"
 #define DEST_PORT 23

 main()
 {
 int sockfd;
 struct sockaddr_in dest_addr; // will hold the destination addr

 sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!

 dest_addr.sin_family = AF_INET; // host byte order
 dest_addr.sin_port = htons(DEST_PORT); // short, network byte order
 dest_addr.sin_addr.s_addr = inet_addr(DEST_IP);
 memset(&(dest_addr.sin_zero), '\0', 8); // zero the rest of the struct

 // don't forget to error check the connect()!
 connect(sockfd, (struct sockaddr *)&dest_addr, sizeof(struct sockaddr));
 ...

Again, be sure to check the return value from connect()--it'll return -1 on error and set the variable errno.

Also, notice that we didn't call bind(). Basically, we don't care about our local port number; we only care where
we're going (the remote port). The kernel will choose a local port for us, and the site we connect to will
automatically get this information from us. No worries.

4.4. listen()--Will somebody please call me?

Ok, time for a change of pace. What if you don't want to connect to a remote host. Say, just for kicks, that you want
to wait for incoming connections and handle them in some way. The process is two step: first you listen(), then you
accept() (see below.)

The listen call is fairly simple, but requires a bit of explanation:

 int listen(int sockfd, int backlog);

sockfd is the usual socket file descriptor from the socket() system call. backlog is the number of connections allowed
on the incoming queue. What does that mean? Well, incoming connections are going to wait in this queue until you
accept() them (see below) and this is the limit on how many can queue up. Most systems silently limit this number
to about 20; you can probably get away with setting it to 5 or 10.

Again, as per usual, listen() returns -1 and sets errno on error.

Well, as you can probably imagine, we need to call bind() before we call listen() or the kernel will have us listening
on a random port. Bleah! So if you're going to be listening for incoming connections, the sequence of system calls
you'll make is:

 socket();
 bind();
 listen();
 /* accept() goes here */

I'll just leave that in the place of sample code, since it's fairly self-explanatory. (The code in the accept() section,
below, is more complete.) The really tricky part of this whole sha-bang is the call to accept().

4.5. accept()--"Thank you for calling port 3490."
Get ready--the accept() call is kinda weird! What's going to happen is this: someone far far away will try to
connect() to your machine on a port that you are listen()ing on. Their connection will be queued up waiting to be
accept()ed. You call accept() and you tell it to get the pending connection. It'll return to you a brand new socket file
descriptor to use for this single connection! That's right, suddenly you have two socket file descriptors for the price
of one! The original one is still listening on your port and the newly created one is finally ready to send() and recv().
We're there!

The call is as follows:

 #include <sys/socket.h>

 int accept(int sockfd, void *addr, int *addrlen);

sockfd is the listen()ing socket descriptor. Easy enough. addr will usually be a pointer to a local struct sockaddr_in.
This is where the information about the incoming connection will go (and with it you can determine which host is
calling you from which port). addrlen is a local integer variable that should be set to sizeof(struct sockaddr_in)
before its address is passed to accept(). Accept will not put more than that many bytes into addr. If it puts fewer in,
it'll change the value of addrlen to reflect that.

Guess what? accept() returns -1 and sets errno if an error occurs. Betcha didn't figure that.

Like before, this is a bunch to absorb in one chunk, so here's a sample code fragment for your perusal:

 #include <string.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>

 #define MYPORT 3490 // the port users will be connecting to

 #define BACKLOG 10 // how many pending connections queue will hold

 main()
 {

 int sockfd, new_fd; // listen on sock_fd, new connection on new_fd
 struct sockaddr_in my_addr; // my address information
 struct sockaddr_in their_addr; // connector's address information
 int sin_size;

 sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!

 my_addr.sin_family = AF_INET; // host byte order
 my_addr.sin_port = htons(MYPORT); // short, network byte order
 my_addr.sin_addr.s_addr = INADDR_ANY; // auto-fill with my IP
 memset(&(my_addr.sin_zero), '\0', 8); // zero the rest of the struct

 // don't forget your error checking for these calls:
 bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));

 listen(sockfd, BACKLOG);

 sin_size = sizeof(struct sockaddr_in);
 new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size);
 .

Again, note that we will use the socket descriptor new_fd for all send() and recv() calls. If you're only getting one
single connection ever, you can close() the listening sockfd in order to prevent more incoming connections on the
same port, if you so desire.

4.6. send() and recv()--Talk to me, baby!
These two functions are for communicating over stream sockets or connected datagram sockets. If you want to use
regular unconnected datagram sockets, you'll need to see the section on sendto() and recvfrom(), below.

The send() call:

 int send(int sockfd, const void *msg, int len, int flags);

sockfd is the socket descriptor you want to send data to (whether it's the one returned by socket() or the one you got
with accept().) msg is a pointer to the data you want to send, and len is the length of that data in bytes. Just set flags
to 0. (See the send() man page for more information concerning flags.)

Some sample code might be:

 char *msg = "Beej was here!";
 int len, bytes_sent;
 .
 .
 len = strlen(msg);
 bytes_sent = send(sockfd, msg, len, 0);
 ...

send() returns the number of bytes actually sent out--this might be less than the number you told it to send! See,
sometimes you tell it to send a whole gob of data and it just can't handle it. It'll fire off as much of the data as it can,
and trust you to send the rest later. Remember, if the value returned by send() doesn't match the value in len, it's up
to you to send the rest of the string. The good news is this: if the packet is small (less than 1K or so) it will probably
manage to send the whole thing all in one go. Again, -1 is returned on error, and errno is set to the error number.

The recv() call is similar in many respects:

 int recv(int sockfd, void *buf, int len, unsigned int flags);

 sockfd is the socket descriptor to read from, buf is the buffer to read the information into, len is the maximum
length of the buffer, and flags can again be set to 0. (See the recv() man page for flag information.)

recv() returns the number of bytes actually read into the buffer, or -1 on error (with errno set, accordingly.)

Wait! recv() can return 0. This can mean only one thing: the remote side has closed the connection on you! A return
value of 0 is recv()'s way of letting you know this has occurred.

There, that was easy, wasn't it? You can now pass data back and forth on stream sockets! Whee! You're a Unix
Network Programmer!

4.7. sendto() and recvfrom()--Talk to me, DGRAM-style
"This is all fine and dandy," I hear you saying, "but where does this leave me with unconnected datagram sockets?"
No problemo, amigo. We have just the thing.

Since datagram sockets aren't connected to a remote host, guess which piece of information we need to give before
we send a packet? That's right! The destination address! Here's the scoop:

 int sendto(int sockfd, const void *msg, int len, unsigned int flags,
 const struct sockaddr *to, int tolen);

As you can see, this call is basically the same as the call to send() with the addition of two other pieces of
information. to is a pointer to a struct sockaddr (which you'll probably have as a struct sockaddr_in and cast it at the
last minute) which contains the destination IP address and port. tolen can simply be set to sizeof(struct sockaddr).

Just like with send(), sendto() returns the number of bytes actually sent (which, again, might be less than the number
of bytes you told it to send!), or -1 on error.

Equally similar are recv() and recvfrom(). The synopsis of recvfrom() is:

 int recvfrom(int sockfd, void *buf, int len, unsigned int flags,
 struct sockaddr *from, int *fromlen);

 Again, this is just like recv() with the addition of a couple fields. from is a pointer to a local struct sockaddr that will
be filled with the IP address and port of the originating machine. fromlen is a pointer to a local int that should be
initialized to sizeof(struct sockaddr). When the function returns, fromlen will contain the length of the address
actually stored in from.

recvfrom() returns the number of bytes received, or -1 on error (with errno set accordingly.)

Remember, if you connect() a datagram socket, you can then simply use send() and recv() for all your transactions.
The socket itself is still a datagram socket and the packets still use UDP, but the socket interface will automatically
add the destination and source information for you.

4.8. close() and shutdown()--Get outta my face!
Whew! You've been send()ing and recv()ing data all day long, and you've had it. You're ready to close the
connection on your socket descriptor. This is easy. You can just use the regular Unix file descriptor close() function:

 close(sockfd);

This will prevent any more reads and writes to the socket. Anyone attempting to read or write the socket on the
remote end will receive an error.

Just in case you want a little more control over how the socket closes, you can use the shutdown() function. It allows
you to cut off communication in a certain direction, or both ways (just like close() does.) Synopsis:

 int shutdown(int sockfd, int how);

sockfd is the socket file descriptor you want to shutdown, and how is one of the following:
0 -- Further receives are disallowed
1 -- Further sends are disallowed
2 -- Further sends and receives are disallowed (like close())

shutdown() returns 0 on success, and -1 on error (with errno set accordingly.)

If you deign to use shutdown() on unconnected datagram sockets, it will simply make the socket unavailable for
further send() and recv() calls (remember that you can use these if you connect() your datagram socket.)

It's important to note that shutdown() doesn't actually close the file descriptor--it just changes its usability. To free a
socket descriptor, you need to use close().

Nothing to it.

4.9. getpeername()--Who are you?
This function is so easy.

It's so easy, I almost didn't give it it's own section. But here it is anyway.

The function getpeername() will tell you who is at the other end of a connected stream socket. The synopsis:

 #include <sys/socket.h>

 int getpeername(int sockfd, struct sockaddr *addr, int *addrlen);

sockfd is the descriptor of the connected stream socket, addr is a pointer to a struct sockaddr (or a struct
sockaddr_in) that will hold the information about the other side of the connection, and addrlen is a pointer to an int,
that should be initialized to sizeof(struct sockaddr).

The function returns -1 on error and sets errno accordingly.

Once you have their address, you can use inet_ntoa() or gethostbyaddr() to print or get more information. No, you
can't get their login name. (Ok, ok. If the other computer is running an ident daemon, this is possible. This, however,
is beyond the scope of this document. Check out RFC-1413 for more info.)

4.10. gethostname()--Who am I?
Even easier than getpeername() is the function gethostname(). It returns the name of the computer that your program
is running on. The name can then be used by gethostbyname(), below, to determine the IP address of your local
machine.

What could be more fun? I could think of a few things, but they don't pertain to socket programming. Anyway,
here's the breakdown:

 #include <unistd.h>

 int gethostname(char *hostname, size_t size);

The arguments are simple: hostname is a pointer to an array of chars that will contain the hostname upon the
function's return, and size is the length in bytes of the hostname array.

The function returns 0 on successful completion, and -1 on error, setting errno as usual.

4.11. DNS--You say "whitehouse.gov", I say "198.137.240.92"
In case you don't know what DNS is, it stands for "Domain Name Service". In a nutshell, you tell it what the human-
readable address is for a site, and it'll give you the IP address (so you can use it with bind(), connect(), sendto(), or
whatever you need it for.) This way, when someone enters:

 $ telnet whitehouse.gov

telnet can find out that it needs to connect() to "198.137.240.92".

But how does it work? You'll be using the function gethostbyname():

 #include <netdb.h>

 struct hostent *gethostbyname(const char *name);

As you see, it returns a pointer to a struct hostent, the layout of which is as follows:

 struct hostent {
 char *h_name;
 char **h_aliases;
 int h_addrtype;
 int h_length;
 char **h_addr_list;
 };
 #define h_addr h_addr_list[0]

And here are the descriptions of the fields in the struct hostent:

h_name -- Official name of the host.

h_aliases -- A NULL-terminated array of alternate names for the host.

h_addrtype -- The type of address being returned; usually AF_INET.

h_length -- The length of the address in bytes.

h_addr_list -- A zero-terminated array of network addresses for the host. Host addresses are in Network Byte Order.

h_addr -- The first address in h_addr_list.

gethostbyname() returns a pointer to the filled struct hostent, or NULL on error. (But errno is not set--h_errno is set
instead. See herror(), below.)

But how is it used? Sometimes (as we find from reading computer manuals), just spewing the information at the
reader is not enough. This function is certainly easier to use than it looks.

Here's an example program:

 /*
 ** getip.c -- a hostname lookup demo
 */

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <netdb.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <arpa/inet.h>

 int main(int argc, char *argv[])
 {
 struct hostent *h;

 if (argc != 2) { // error check the command line
 fprintf(stderr,"usage: getip address\n");

 exit(1);
 }

 if ((h=gethostbyname(argv[1])) == NULL) { // get the host info
 herror("gethostbyname");
 exit(1);
 }

 printf("Host name : %s\n", h->h_name);
 printf("IP Address : %s\n", inet_ntoa(*((struct in_addr *)h->h_addr)));

 return 0;
 }

With gethostbyname(), you can't use perror() to print error message (since errno is not used). Instead, call herror().

It's pretty straightforward. You simply pass the string that contains the machine name ("whitehouse.gov") to
gethostbyname(), and then grab the information out of the returned struct hostent.

The only possible weirdness might be in the printing of the IP address, above. h->h_addr is a char*, but inet_ntoa()
wants a struct in_addr passed to it. So I cast h->h_addr to a struct in_addr*, then dereference it to get at the data.

5. Client-Server Background
It's a client-server world, baby. Just about everything on the network deals with client processes talking to server
processes and vice-versa. Take telnet, for instance. When you connect to a remote host on port 23 with telnet (the
client), a program on that host (called telnetd, the server) springs to life. It handles the incoming telnet connection,
sets you up with a login prompt, etc.

Figure 2. Client-Server Interaction.

The exchange of information between client and server is summarized in Figure 2.
Note that the client-server pair can speak SOCK_STREAM, SOCK_DGRAM, or anything else (as long as they're
speaking the same thing.) Some good examples of client-server pairs are telnet/telnetd, ftp/ftpd, or bootp/bootpd.
Every time you use ftp, there's a remote program, ftpd, that serves you.
Often, there will only be one server on a machine, and that server will handle multiple clients using fork(). The basic
routine is: server will wait for a connection, accept() it, and fork() a child process to handle it. This is what our
sample server does in the next section.

5.1. A Simple Stream Server
All this server does is send the string "Hello, World!\n" out over a stream connection. All you need to do to test this
server is run it in one window, and telnet to it from another with:
 $ telnet remotehostname 3490
where remotehostname is the name of the machine you're running it on.
The server code: (Note: a trailing backslash on a line means that the line is continued on the next.)
 /*
 ** server.c -- a stream socket server demo
 */

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <errno.h>

 #include <string.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <arpa/inet.h>
 #include <sys/wait.h>
 #include <signal.h>

 #define MYPORT 3490 // the port users will be connecting to

 #define BACKLOG 10 // how many pending connections queue will hold

 void sigchld_handler(int s)
 {
 while(wait(NULL) > 0);
 }

 int main(void)
 {
 int sockfd, new_fd; // listen on sock_fd, new connection on new_fd
 struct sockaddr_in my_addr; // my address information
 struct sockaddr_in their_addr; // connector's address information
 int sin_size;
 struct sigaction sa;
 int yes=1;

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 if (setsockopt(sockfd,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -
1) {
 perror("setsockopt");
 exit(1);
 }

 my_addr.sin_family = AF_INET; // host byte order
 my_addr.sin_port = htons(MYPORT); // short, network byte order
 my_addr.sin_addr.s_addr = INADDR_ANY; // automatically fill with my
IP
 memset(&(my_addr.sin_zero), '\0', 8); // zero the rest of the struct

 if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct
sockaddr))
 == -1)
{
 perror("bind");
 exit(1);
 }

 if (listen(sockfd, BACKLOG) == -1) {
 perror("listen");
 exit(1);
 }

 sa.sa_handler = sigchld_handler; // reap all dead processes
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_RESTART;
 if (sigaction(SIGCHLD, &sa, NULL) == -1) {
 perror("sigaction");
 exit(1);
 }

 while(1) { // main accept() loop
 sin_size = sizeof(struct sockaddr_in);
 if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr,
 &sin_size)) == -1)
{
 perror("accept");
 continue;
 }
 printf("server: got connection from %s\n",

inet_ntoa(their_addr.sin_addr));
 if (!fork()) { // this is the child process
 close(sockfd); // child doesn't need the listener
 if (send(new_fd, "Hello, world!\n", 14, 0) == -1)
 perror("send");
 close(new_fd);
 exit(0);
 }
 close(new_fd); // parent doesn't need this
 }

 return 0;
 }
In case you're curious, I have the code in one big main() function for (I feel) syntactic clarity. Feel free to split it into
smaller functions if it makes you feel better.
(Also, this whole sigaction() thing might be new to you--that's ok. The code that's there is responsible for reaping
zombie processes that appear as the fork()ed child processes exit. If you make lots of zombies and don't reap them,
your system administrator will become agitated.)
You can get the data from this server by using the client listed in the next section.

5.2. A Simple Stream Client
This guy's even easier than the server. All this client does is connect to the host you specify on the command line,
port 3490. It gets the string that the server sends.
The client source:
 /*
 ** client.c -- a stream socket client demo
 */

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <errno.h>
 #include <string.h>
 #include <netdb.h>
 #include <sys/types.h>
 #include <netinet/in.h>
 #include <sys/socket.h>

 #define PORT 3490 // the port client will be connecting to

 #define MAXDATASIZE 100 // max number of bytes we can get at once

 int main(int argc, char *argv[])
 {
 int sockfd, numbytes;
 char buf[MAXDATASIZE];
 struct hostent *he;
 struct sockaddr_in their_addr; // connector's address information

 if (argc != 2) {
 fprintf(stderr,"usage: client hostname\n");

 exit(1);
 }

 if ((he=gethostbyname(argv[1])) == NULL) { // get the host info
 perror("gethostbyname");
 exit(1);
 }

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 their_addr.sin_family = AF_INET; // host byte order
 their_addr.sin_port = htons(PORT); // short, network byte order
 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
 memset(&(their_addr.sin_zero), '\0', 8); // zero the rest of the
struct

 if (connect(sockfd, (struct sockaddr *)&their_addr,
 sizeof(struct sockaddr)) == -1)
{
 perror("connect");
 exit(1);
 }

 if ((numbytes=recv(sockfd, buf, MAXDATASIZE-1, 0)) == -1) {
 perror("recv");
 exit(1);
 }

 buf[numbytes] = '\0';

 printf("Received: %s",buf);

 close(sockfd);

 return 0;
 }
Notice that if you don't run the server before you run the client, connect() returns "Connection refused". Very useful.

5.3. Datagram Sockets
I really don't have that much to talk about here, so I'll just present a couple of sample programs: talker.c and
listener.c.
listener sits on a machine waiting for an incoming packet on port 4950. talker sends a packet to that port, on the
specified machine, that contains whatever the user enters on the command line.
Here is the source for listener.c:
 /*
 ** listener.c -- a datagram sockets "server" demo
 */

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <errno.h>
 #include <string.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <arpa/inet.h>

 #define MYPORT 4950 // the port users will be connecting to

 #define MAXBUFLEN 100

 int main(void)
 {
 int sockfd;
 struct sockaddr_in my_addr; // my address information
 struct sockaddr_in their_addr; // connector's address information
 int addr_len, numbytes;
 char buf[MAXBUFLEN];

 if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 my_addr.sin_family = AF_INET; // host byte order
 my_addr.sin_port = htons(MYPORT); // short, network byte order
 my_addr.sin_addr.s_addr = INADDR_ANY; // automatically fill with my
IP
 memset(&(my_addr.sin_zero), '\0', 8); // zero the rest of the struct

 if (bind(sockfd, (struct sockaddr *)&my_addr,
 sizeof(struct sockaddr)) == -1)
{
 perror("bind");
 exit(1);
 }

 addr_len = sizeof(struct sockaddr);
 if ((numbytes=recvfrom(sockfd,buf, MAXBUFLEN-1, 0,
 (struct sockaddr *)&their_addr, &addr_len)) == -1)
{
 perror("recvfrom");
 exit(1);
 }

 printf("got packet from %s\n",inet_ntoa(their_addr.sin_addr));
 printf("packet is %d bytes long\n",numbytes);
 buf[numbytes] = '\0';
 printf("packet contains \"%s\"\n",buf);

 close(sockfd);

 return 0;
 }
Notice that in our call to socket() we're finally using SOCK_DGRAM. Also, note that there's no need to listen() or
accept(). This is one of the perks of using unconnected datagram sockets!
Next comes the source for talker.c:
 /*
 ** talker.c -- a datagram "client" demo
 */

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <errno.h>
 #include <string.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <arpa/inet.h>
 #include <netdb.h>

 #define MYPORT 4950 // the port users will be connecting to

 int main(int argc, char *argv[])
 {
 int sockfd;
 struct sockaddr_in their_addr; // connector's address information
 struct hostent *he;
 int numbytes;

 if (argc != 3) {
 fprintf(stderr,"usage: talker hostname message\n");
 exit(1);
 }

 if ((he=gethostbyname(argv[1])) == NULL) { // get the host info
 perror("gethostbyname");
 exit(1);
 }

 if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 their_addr.sin_family = AF_INET; // host byte order
 their_addr.sin_port = htons(MYPORT); // short, network byte order
 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
 memset(&(their_addr.sin_zero), '\0', 8); // zero the rest of the
struct

 if ((numbytes=sendto(sockfd, argv[2], strlen(argv[2]), 0,
 (struct sockaddr *)&their_addr, sizeof(struct sockaddr))) == -1)
{
 perror("sendto");
 exit(1);
 }

 printf("sent %d bytes to %s\n", numbytes,

inet_ntoa(their_addr.sin_addr));

 close(sockfd);

 return 0;
 }
And that's all there is to it! Run listener on some machine, then run talker on another. Watch them communicate!
Fun G-rated excitement for the entire nuclear family!
Except for one more tiny detail that I've mentioned many times in the past: connected datagram sockets. I need to
talk about this here, since we're in the datagram section of the document. Let's say that talker calls connect() and
specifies the listener's address. From that point on, talker may only sent to and receive from the address specified by
connect(). For this reason, you don't have to use sendto() and recvfrom(); you can simply use send() and recv().

6. Slightly Advanced Techniques
These aren't really advanced, but they're getting out of the more basic levels we've already covered. In fact, if you've
gotten this far, you should consider yourself fairly accomplished in the basics of Unix network programming!
Congratulations!
So here we go into the brave new world of some of the more esoteric things you might want to learn about sockets.
Have at it!

6.1. Blocking
Blocking. You've heard about it--now what the heck is it? In a nutshell, "block" is techie jargon for "sleep". You
probably noticed that when you run listener, above, it just sits there until a packet arrives. What happened is that it
called recvfrom(), there was no data, and so recvfrom() is said to "block" (that is, sleep there) until some data
arrives.
Lots of functions block. accept() blocks. All the recv() functions block. The reason they can do this is because
they're allowed to. When you first create the socket descriptor with socket(), the kernel sets it to blocking. If you
don't want a socket to be blocking, you have to make a call to fcntl():
 #include <unistd.h>
 #include <fcntl.h>
 .
 .
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 fcntl(sockfd, F_SETFL, O_NONBLOCK);
 .
 .
By setting a socket to non-blocking, you can effectively "poll" the socket for information. If you try to read from a
non-blocking socket and there's no data there, it's not allowed to block--it will return -1 and errno will be set to
EWOULDBLOCK.
Generally speaking, however, this type of polling is a bad idea. If you put your program in a busy-wait looking for
data on the socket, you'll suck up CPU time like it was going out of style. A more elegant solution for checking to
see if there's data waiting to be read comes in the following section on select().

6.2. select()--Synchronous I/O Multiplexing
This function is somewhat strange, but it's very useful. Take the following situation: you are a server and you want
to listen for incoming connections as well as keep reading from the connections you already have.
No problem, you say, just an accept() and a couple of recv()s. Not so fast, buster! What if you're blocking on an
accept() call? How are you going to recv() data at the same time? "Use non-blocking sockets!" No way! You don't
want to be a CPU hog. What, then?
select() gives you the power to monitor several sockets at the same time. It'll tell you which ones are ready for
reading, which are ready for writing, and which sockets have raised exceptions, if you really want to know that.
Without any further ado, I'll offer the synopsis of select():
 #include <sys/time.h>
 #include <sys/types.h>
 #include <unistd.h>

 int select(int numfds, fd_set *readfds, fd_set *writefds,
 fd_set *exceptfds, struct timeval *timeout);
The function monitors "sets" of file descriptors; in particular readfds, writefds, and exceptfds. If you want to see if
you can read from standard input and some socket descriptor, sockfd , just add the file descriptors 0 and sockfd to the
set readfds. The parameter numfds should be set to the values of the highest file descriptor plus one. In this example,
it should be set to sockfd+1, since it is assuredly higher than standard input (0).
When select() returns, readfds will be modified to reflect which of the file descriptors you selected which is ready
for reading. You can test them with the macro FD_ISSET(), below.
Before progressing much further, I'll talk about how to manipulate these sets. Each set is of the type fd_set. The
following macros operate on this type:

• FD_ZERO(fd_set *set) -- clears a file descriptor set
• FD_SET(int fd, fd_set *set) -- adds fd to the set
• FD_CLR(int fd, fd_set *set) -- removes fd from the set
• FD_ISSET(int fd, fd_set *set) -- tests to see if fd is in the set

Finally, what is this weirded out struct timeval? Well, sometimes you don't want to wait forever for someone to send
you some data. Maybe every 96 seconds you want to print "Still Going..." to the terminal even though nothing has
happened. This time structure allows you to specify a timeout period. If the time is exceeded and select() still hasn't
found any ready file descriptors, it'll return so you can continue processing.
The struct timeval has the follow fields:
 struct timeval {
 int tv_sec; // seconds
 int tv_usec; // microseconds
 };

Just set tv_sec to the number of seconds to wait, and set tv_usec to the number of microseconds to wait. Yes, that's
microseconds, not milliseconds. There are 1,000 microseconds in a millisecond, and 1,000 milliseconds in a second.
Thus, there are 1,000,000 microseconds in a second. Why is it "usec"? The "u" is supposed to look like the Greek
letter ì (Mu) that we use for "micro". Also, when the function returns, timeout might be updated to show the time
still remaining. This depends on what flavor of Unix you're running.
Yay! We have a microsecond resolution timer! Well, don't count on it. Standard Unix timeslice is around 100
milliseconds, so you might have to wait that long no matter how small you set your struct timeval.
Other things of interest: If you set the fields in your struct timeval to 0, select() will timeout immediately, effectively
polling all the file descriptors in your sets. If you set the parameter timeout to NULL, it will never timeout, and will
wait until the first file descriptor is ready. Finally, if you don't care about waiting for a certain set, you can just set it
to NULL in the call to select().
The following code snippet waits 2.5 seconds for something to appear on standard input:
 /*
 ** select.c -- a select() demo
 */

 #include <stdio.h>
 #include <sys/time.h>
 #include <sys/types.h>
 #include <unistd.h>

 #define STDIN 0 // file descriptor for standard input

 int main(void)
 {
 struct timeval tv;
 fd_set readfds;

 tv.tv_sec = 2;
 tv.tv_usec = 500000;

 FD_ZERO(&readfds);
 FD_SET(STDIN, &readfds);

 // don't care about writefds and exceptfds:
 select(STDIN+1, &readfds, NULL, NULL, &tv);

 if (FD_ISSET(STDIN, &readfds))
 printf("A key was pressed!\n");
 else
 printf("Timed out.\n");

 return 0;
 }
If you're on a line buffered terminal, the key you hit should be RETURN or it will time out anyway.
Now, some of you might think this is a great way to wait for data on a datagram socket--and you are right: it might
be. Some Unices can use select in this manner, and some can't. You should see what your local man page says on
the matter if you want to attempt it.
Some Unices update the time in your struct timeval to reflect the amount of time still remaining before a timeout.
But others do not. Don't rely on that occurring if you want to be portable. (Use gettimeofday() if you need to track
time elapsed. It's a bummer, I know, but that's the way it is.)
What happens if a socket in the read set closes the connection? Well, in that case, select() returns with that socket
descriptor set as "ready to read". When you actually do recv() from it, recv() will return 0. That's how you know the
client has closed the connection.
One more note of interest about select(): if you have a socket that is listen()ing, you can check to see if there is a
new connection by putting that socket's file descriptor in the readfds set.
And that, my friends, is a quick overview of the almighty select() function.
But, by popular demand, here is an in-depth example. Unfortunately, the difference between the dirt-simple
example, above, and this one here is significant. But have a look, then read the description that follows it.
This program acts like a simple multi-user chat server. Start it running in one window, then telnet to it ("telnet
hostname 9034") from multiple other windows. When you type something in one telnet session, it should appear in
all the others.

 /*
 ** selectserver.c -- a cheezy multiperson chat server
 */

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <unistd.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <arpa/inet.h>

 #define PORT 9034 // port we're listening on

 int main(void)
 {
 fd_set master; // master file descriptor list
 fd_set read_fds; // temp file descriptor list for select()
 struct sockaddr_in myaddr; // server address
 struct sockaddr_in remoteaddr; // client address
 int fdmax; // maximum file descriptor number
 int listener; // listening socket descriptor
 int newfd; // newly accept()ed socket descriptor
 char buf[256]; // buffer for client data
 int nbytes;
 int yes=1; // for setsockopt() SO_REUSEADDR, below
 int addrlen;
 int i, j;

 FD_ZERO(&master); // clear the master and temp sets
 FD_ZERO(&read_fds);

 // get the listener
 if ((listener = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 // lose the pesky "address already in use" error message
 if (setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes,
 sizeof(int)) == -
1) {
 perror("setsockopt");
 exit(1);
 }

 // bind
 myaddr.sin_family = AF_INET;
 myaddr.sin_addr.s_addr = INADDR_ANY;
 myaddr.sin_port = htons(PORT);
 memset(&(myaddr.sin_zero), '\0', 8);
 if (bind(listener, (struct sockaddr *)&myaddr, sizeof(myaddr)) == -1)
{
 perror("bind");
 exit(1);
 }

 // listen
 if (listen(listener, 10) == -1) {
 perror("listen");
 exit(1);
 }

 // add the listener to the master set
 FD_SET(listener, &master);

 // keep track of the biggest file descriptor
 fdmax = listener; // so far, it's this one

 // main loop
 for(;;) {
 read_fds = master; // copy it
 if (select(fdmax+1, &read_fds, NULL, NULL, NULL) == -1) {
 perror("select");
 exit(1);
 }

 // run through the existing connections looking for data to read
 for(i = 0; i <= fdmax; i++) {
 if (FD_ISSET(i, &read_fds)) { // we got one!!
 if (i == listener) {
 // handle new connections
 addrlen = sizeof(remoteaddr);
 if ((newfd = accept(listener, (struct sockaddr
*)&remoteaddr,
 &addrlen))
== -1) {
 perror("accept");
 } else {
 FD_SET(newfd, &master); // add to master set
 if (newfd > fdmax) { // keep track of the
maximum
 fdmax = newfd;
 }
 printf("selectserver: new connection from %s on "
 "socket %d\n",
inet_ntoa(remoteaddr.sin_addr), newfd);
 }
 } else {
 // handle data from a client
 if ((nbytes = recv(i, buf, sizeof(buf), 0)) <= 0) {
 // got error or connection closed by client
 if (nbytes == 0) {
 // connection closed
 printf("selectserver: socket %d hung up\n",
i);
 } else {
 perror("recv");
 }
 close(i); // bye!
 FD_CLR(i, &master); // remove from master set
 } else {
 // we got some data from a client
 for(j = 0; j <= fdmax; j++) {
 // send to everyone!
 if (FD_ISSET(j, &master)) {
 // except the listener and ourselves
 if (j != listener && j != i) {
 if (send(j, buf, nbytes, 0) == -1) {
 perror("send");
 }
 }
 }
 }
 }

 } // it's SO UGLY!
 }
 }
 }

 return 0;
 }
Notice I have two file descriptor sets in the code: master and read_fds. The first, master, holds all the socket
descriptors that are currently connected, as well as the socket descriptor that is listening for new connections.
The reason I have the master set is that select() actually changes the set you pass into it to reflect which sockets are
ready to read. Since I have to keep track of the connections from one call of select() to the next, I must store these
safely away somewhere. At the last minute, I copy the master into the read_fds, and then call select().
But doesn't this mean that every time I get a new connection, I have to add it to the master set? Yup! And every time
a connection closes, I have to remove it from the master set? Yes, it does.
Notice I check to see when the listener socket is ready to read. When it is, it means I have a new connection
pending, and I accept() it and add it to the master set. Similarly, when a client connection is ready to read, and recv()
returns 0, I know the client has closed the connection, and I must remove it from the master set.
If the client recv() returns non-zero, though, I know some data has been received. So I get it, and then go through the
master list and send that data to all the rest of the connected clients.
And that, my friends, is a less-than-simple overview of the almighty select() function.

6.3. Handling Partial send()s
Remember back in the section about send(), above, when I said that send() might not send all the bytes you asked it
to? That is, you want it to send 512 bytes, but it returns 412. What happened to the remaining 100 bytes?
Well, they're still in your little buffer waiting to be sent out. Due to circumstances beyond your control, the kernel
decided not to send all the data out in one chunk, and now, my friend, it's up to you to get the data out there.
You could write a function like this to do it, too:
 #include <sys/types.h>
 #include <sys/socket.h>

 int sendall(int s, char *buf, int *len)
 {
 int total = 0; // how many bytes we've sent
 int bytesleft = *len; // how many we have left to send
 int n;

 while(total < *len) {
 n = send(s, buf+total, bytesleft, 0);
 if (n == -1) { break; }
 total += n;
 bytesleft -= n;
 }

 *len = total; // return number actually sent here

 return n==-1?-1:0; // return -1 on failure, 0 on success
 }
In this example, s is the socket you want to send the data to, buf is the buffer containing the data, and len is a pointer
to an int containing the number of bytes in the buffer.
The function returns -1 on error (and errno is still set from the call to send().) Also, the number of bytes actually
sent is returned in len. This will be the same number of bytes you asked it to send, unless there was an error.
sendall() will do it's best, huffing and puffing, to send the data out, but if there's an error, it gets back to you right
away.
For completeness, here's a sample call to the function:
 char buf[10] = "Beej!";
 int len;

 len = strlen(buf);
 if (sendall(s, buf, &len) == -1) {
 perror("sendall");
 printf("We only sent %d bytes because of the error!\n", len);

 }
What happens on the receiver's end when part of a packet arrives? If the packets are variable length, how does the
receiver know when one packet ends and another begins? Yes, real-world scenarios are a royal pain in the donkeys.
You probably have to encapsulate (remember that from the data encapsulation section way back there at the
beginning?) Read on for details!

6.4. Son of Data Encapsulation
What does it really mean to encapsulate data, anyway? In the simplest case, it means you'll stick a header on there
with either some identifying information or a packet length, or both.
What should your header look like? Well, it's just some binary data that represents whatever you feel is necessary to
complete your project.
Wow. That's vague.
Okay. For instance, let's say you have a multi-user chat program that uses SOCK_STREAMs. When a user types
("says") something, two pieces of information need to be transmitted to the server: what was said and who said it.
So far so good? "What's the problem?" you're asking.
The problem is that the messages can be of varying lengths. One person named "tom" might say, "Hi", and another
person named "Benjamin" might say, "Hey guys what is up?"
So you send() all this stuff to the clients as it comes in. Your outgoing data stream looks like this:
 t o m H i B e n j a m i n H e y g u y s w h a t i s u p ?
And so on. How does the client know when one message starts and another stops? You could, if you wanted, make
all messages the same length and just call the sendall() we implemented, above. But that wastes bandwidth! We
don't want to send() 1024 bytes just so "tom" can say "Hi".
So we encapsulate the data in a tiny header and packet structure. Both the client and server know how to pack and
unpack (sometimes referred to as "marshal" and "unmarshal") this data. Don't look now, but we're starting to define
a protocol that describes how a client and server communicate!
In this case, let's assume the user name is a fixed length of 8 characters, padded with '\0'. And then let's assume the
data is variable length, up to a maximum of 128 characters. Let's have a look a sample packet structure that we
might use in this situation:

1. len (1 byte, unsigned) -- The total length of the packet, counting the 8-byte user name and chat data.
2. name (8 bytes) -- The user's name, NUL-padded if necessary.
3. chatdata (n-bytes) -- The data itself, no more than 128 bytes. The length of the packet should be calculated

as the length of this data plus 8 (the length of the name field, above).
Why did I choose the 8-byte and 128-byte limits for the fields? I pulled them out of the air, assuming they'd be long
enough. Maybe, though, 8 bytes is too restrictive for your needs, and you can have a 30-byte name field, or
whatever. The choice is up to you.
Using the above packet definition, the first packet would consist of the following information (in hex and ASCII):
 0A 74 6F 6D 00 00 00 00 00 48 69
 (length) T o m (padding) H i
And the second is similar:
 14 42 65 6E 6A 61 6D 69 6E 48 65 79 20 67 75 79 73 20 77 ...
 (length) B e n j a m i n H e y g u y s w ...
(The length is stored in Network Byte Order, of course. In this case, it's only one byte so it doesn't matter, but
generally speaking you'll want all your binary integers to be stored in Network Byte Order in your packets.)
When you're sending this data, you should be safe and use a command similar to sendall(), above, so you know all
the data is sent, even if it takes multiple calls to send() to get it all out.
Likewise, when you're receiving this data, you need to do a bit of extra work. To be safe, you should assume that
you might receive a partial packet (like maybe we receive "00 14 42 65 6E" from Benjamin, above, but that's all we
get in this call to recv()). We need to call recv() over and over again until the packet is completely received.
But how? Well, we know the number of bytes we need to receive in total for the packet to be complete, since that
number is tacked on the front of the packet. We also know the maximum packet size is 1+8+128, or 137 bytes
(because that's how we defined the packet.)
What you can do is declare an array big enough for two packets. This is your work array where you will reconstruct
packets as they arrive.
Every time you recv() data, you'll feed it into the work buffer and check to see if the packet is complete. That is, the
number of bytes in the buffer is greater than or equal to the length specified in the header (+1, because the length in
the header doesn't include the byte for the length itself.) If the number of bytes in the buffer is less than 1, the packet
is not complete, obviously. You have to make a special case for this, though, since the first byte is garbage and you
can't rely on it for the correct packet length.
Once the packet is complete, you can do with it what you will. Use it, and remove it from your work buffer.
Whew! Are you juggling that in your head yet? Well, here's the second of the one-two punch: you might have read
past the end of one packet and onto the next in a single recv() call. That is, you have a work buffer with one

complete packet, and an incomplete part of the next packet! Bloody heck. (But this is why you made your work
buffer large enough to hold two packets--in case this happened!)
Since you know the length of the first packet from the header, and you've been keeping track of the number of bytes
in the work buffer, you can subtract and calculate how many of the bytes in the work buffer belong to the second
(incomplete) packet. When you've handled the first one, you can clear it out of the work buffer and move the partial
second packed down the to front of the buffer so it's all ready to go for the next recv().
(Some of you readers will note that actually moving the partial second packet to the beginning of the work buffer
takes time, and the program can be coded to not require this by using a circular buffer. Unfortunately for the rest of
you, a discussion on circular buffers is beyond the scope of this article. If you're still curious, grab a data structures
book and go from there.)
I never said it was easy. Ok, I did say it was easy. And it is; you just need practice and pretty soon it'll come to you
naturally. By Excalibur I swear it!

8. Common Questions
Q: Where can I get those header files?
A: If you don't have them on your system already, you probably don't need them. Check the manual for your
particular platform. If you're building for Windows, you only need to #include <winsock.h>.
Q: What do I do when bind() reports "Address already in use"?
A: You have to use setsockopt() with the SO_REUSEADDR option on the listening socket. Check out the section
on bind() and the section on select() for an example.
Q: How do I get a list of open sockets on the system?
A: Use the netstat. Check the man page for full details, but you should get some good output just typing:
$ netstat
The only trick is determining which socket is associated with which program. :-)
Q: How can I view the routing table?
A: Run the route command (in /sbin on most Linuxes) or the command netstat -r.
Q: How can I run the client and server programs if I only have one computer? Don't I need a network to write
network program?
A: Fortunately for you, virtually all machines implement a loopback network "device" that sits in the kernel and
pretends to be a network card. (This is the interface listed as "lo" in the routing table.)
Pretend you're logged into a machine named "goat". Run the client in one window and the server in another. Or start
the server in the background ("server &") and run the client in the same window. The upshot of the loopback device
is that you can either client goat or client localhost (since "localhost" is likely defined in your /etc/hosts file) and
you'll have the client talking to the server without a network!
In short, no changes are necessary to any of the code to make it run on a single non-networked machine! Huzzah!
Q: How can I tell if the remote side has closed connection?
A: You can tell because recv() will return 0.
Q: How do I implement a "ping" utility? What is ICMP? Where can I find out more about raw sockets and
SOCK_RAW?
A: All your raw sockets questions will be answered in W. Richard Stevens' UNIX Network Programming books.
See the books section of this guide.
Q: How do I build for Windows?
A: First, delete Windows and install Linux or BSD. };-). No, actually, just see the section on building for Windows
in the introduction.
Q: How do I build for Solaris/SunOS? I keep getting linker errors when I try to compile!
A: The linker errors happen because Sun boxes don't automatically compile in the socket libraries. See the section
on building for Solaris/SunOS in the introduction for an example of how to do this.
Q: Why does select() keep falling out on a signal?
A: Signals tend to cause blocked system calls to return -1 with errno set to EINTR. When you set up a signal
handler with sigaction(), you can set the flag SA_RESTART, which is supposed to restart the system call after it was
interrupted.
Naturally, this doesn't always work.
My favorite solution to this involves a goto statement. You know this irritates your professors to no end, so go for it!
select_restart:
 if ((err = select(fdmax+1, &readfds, NULL, NULL, NULL)) == -1) {
 if (errno == EINTR) {
 // some signal just interrupted us, so restart
 goto select_restart;
 }

 // handle the real error here:
 perror("select");
 }
Sure, you don't need to use goto in this case; you can use other structures to control it. But I think the goto statement
is actually cleaner.
Q: How can I implement a timeout on a call to recv()?
A: Use select()! It allows you to specify a timeout parameter for socket descriptors that you're looking to read from.
Or, you could wrap the entire functionality in a single function, like this:
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>

int recvtimeout(int s, char *buf, int len, int timeout)
{
 fd_set fds;
 int n;
 struct timeval tv;

 // set up the file descriptor set
 FD_ZERO(&fds);
 FD_SET(s, &fds);

 // set up the struct timeval for the timeout
 tv.tv_sec = timeout;
 tv.tv_usec = 0;

 // wait until timeout or data received
 n = select(s+1, &fds, NULL, NULL, &tv);
 if (n == 0) return -2; // timeout!
 if (n == -1) return -1; // error

 // data must be here, so do a normal recv()
 return recv(s, buf, len, 0);
}

// Sample call to recvtimeout():
 .
 .
 n = recvtimeout(s, buf, sizeof(buf), 10); // 10 second timeout

 if (n == -1) {
 // error occurred
 perror("recvtimeout");
 }
 else if (n == -2) {
 // timeout occurred
 } else {
 // got some data in buf
 }
 .
 .
Notice that recvtimeout() returns -2 in case of a timeout. Why not return 0? Well, if you recall, a return value of 0 on
a call to recv() means that the remote side closed the connection. So that return value is already spoken for, and -1
means "error", so I chose -2 as my timeout indicator.
Q: How do I encrypt or compress the data before sending it through the socket?
A: One easy way to do encryption is to use SSL (secure sockets layer), but that's beyond the scope of this guide.
But assuming you want to plug in or implement your own compressor or encryption system, it's just a matter of
thinking of your data as running through a sequence of steps between both ends. Each step changes the data in some
way.

4. server reads data from file (or whereever)
5. server encrypts data (you add this part)

6. server send()s encrypted data
Now the other way around:

4. client recv()s encrypted data
5. client decrypts data (you add this part)
6. client writes data to file (or whereever)

You can also do compression at the same point that you do the encryption/decryption, above. Or you could do both!
Just remember to compress before you encrypt. :)
Just as long as the client properly undoes what the server does, the data will be fine in the end no matter how many
intermediate steps you add.
So all you need to do to use my code is to find the place between where the data is read and the data is sent (using
send()) over the network, and stick some code in there that does the encryption.
Q: What is this "PF_INET" I keep seeing? Is it related to AF_INET?
A: Yes, yes it is. See the section on socket() for details.
Q: How can I write a server that accepts shell commands from a client and executes them?
A: For simplicity, lets say the client connect()s, send()s, and close()s the connection (that is, there are no subsequent
system calls without the client connecting again.)
The process the client follows is this:

1. connect() to server
2. send("/sbin/ls > /tmp/client.out")
3. close() the connection

Meanwhile, the server is handling the data and executing it:
1. accept() the connection from the client
2. recv(str) the command string
3. close() the connection
4. system(str) to run the command

Beware! Having the server execute what the client says is like giving remote shell access and people can do things
to your account when they connect to the server. For instance, in the above example, what if the client sends "rm -rf
~"? It deletes everything in your account, that's what!
So you get wise, and you prevent the client from using any except for a couple utilities that you know are safe, like
the foobar utility:
 if (!strcmp(str, "foobar")) {
 sprintf(sysstr, "%s > /tmp/server.out", str);
 system(sysstr);
 }
But you're still unsafe, unfortunately: what if the client enters "foobar; rm -rf ~"? The safest thing to do is to write a
little routine that puts an escape ("\") character in front of all non-alphanumeric characters (including spaces, if
appropriate) in the arguments for the command.
As you can see, security is a pretty big issue when the server starts executing things the client sends.
Q: I'm sending a slew of data, but when I recv(), it only receives 536 bytes or 1460 bytes at a time. But if I run it on
my local machine, it receives all the data at the same time. What's going on?
A: You're hitting the MTU--the maximum size the physical medium can handle. On the local machine, you're using
the loopback device which can handle 8K or more no problem. But on ethernet, which can only handle 1500 bytes
with a header, you hit that limit. Over a modem, with 576 MTU (again, with header), you hit the even lower limit.
You have to make sure all the data is being sent, first of all. (See the sendall() function implementation for details.)
Once you're sure of that, then you need to call recv() in a loop until all your data is read.
Read the section Son of Data Encapsulation for details on receiving complete packets of data using multiple calls to
recv().
Q: I'm on a Windows box and I don't have the fork() system call or any kind of struct sigaction. What to do?
A: If they're anywhere, they'll be in POSIX libraries that may have shipped with your compiler. Since I don't have a
Windows box, I really can't tell you the answer, but I seem to remember that Microsoft has a POSIX compatibility
layer and that's where fork() would be. (And maybe even sigaction.)
Search the help that came with VC++ for "fork" or "POSIX" and see if it gives you any clues.
If that doesn't work at all, ditch the fork()/sigaction stuff and replace it with the Win32 equivalent: CreateProcess(). I
don't know how to use CreateProcess()--it takes a bazillion arguments, but it should be covered in the docs that came
with VC++.
Q: How do I send data securely with TCP/IP using encryption?
A: Check out the OpenSSL project.
Q: I'm behind a firewall--how do I let people outside the firewall know my IP address so they can connect to my
machine?
A: Unfortunately, the purpose of a firewall is to prevent people outside the firewall from connecting to machines
inside the firewall, so allowing them to do so is basically considered a breach of security.

This isn't to say that all is lost. For one thing, you can still often connect() through the firewall if it's doing some
kind of masquerading or NAT or something like that. Just design your programs so that you're always the one
initiating the connection, and you'll be fine.
If that's not satisfactory, you can ask your sysadmins to poke a hole in the firewall so that people can connect to you.
The firewall can forward to you either through it's NAT software, or through a proxy or something like that.
Be aware that a hole in the firewall is nothing to be taken lightly. You have to make sure you don't give bad people
access to the internal network; if you're a beginner, it's a lot harder to make software secure than you might imagine.
Don't make your sysadmin mad at me. ;-)

